

NIMONIC[®] alloy 263 (UNS N07263/W. Nr. 2.4650), an air melted nickel-base alloy, was developed by Rolls-Royce (1971) Ltd. to provide a sheet material which could be readily fabricated and would offer improved ductility in welded assemblies to replace NIMONIC alloy 80A.

It was designed as sheet material to meet specific design criteria in terms of proof stress and creep strength. It is now available in all standard forms.

The welding techniques for this alloy are similar to those in common use for other age-hardenable nickelbase alloys. During salvage welding operations, a preweld heat-treatment is not necessary on age-hardened assemblies but a subsequent age-hardening treatment is desirable after all salvage welding is completed. Material will age in service if temperatures are above 750°C.

Heat Treatment

NIMONIC alloy 263 is normally given a two-stage heattreatment, that is, solution treatment and age hardening prior to service. This heat treatment is normally carried out in air. Material is usually supplied in the solutiontreated condition and aged by the customer as part of the fabrication process. Material can however be supplied to any requested heat treatment condition. Details of recommended heat-treatments for various forms are given below, where the time at solution treatment temperature depends on section thickness.

Form	Solution Treatment	Aging Treatment	
Extruded or forged bars and section	1½-2½ h/1150°C/WQ	8 h/800°C/AC	
for forging and /or machining			
Hot-rolled sheet	¹ / ₂ h/1150°C/WQ or AC	8 h/800°C/AC	
Cold-rolled sheet and cold-drawn	3-10 min/1150°C/ FBQ or WQ	8 h/800°C/AC	
section (including tube)	State of State State of State of State of State of State		

Cooling for hot-rolled sheet from solution treatment temperature may be by water quenching (WQ) or by air cooling (AC); the former is recommended. For cold-worked products, especially sheet, fluidized bed quenching (FBQ) produces less distortion than water quenching without any appreciable change of properties.

The solution treatment temperature of 1150°C yields a compromise between tensile and creep strengths, coupled with good ductility values in both cases.

Interstage annealing to remove residual cold-work is normally applied during manipulation operations. The treatment recommended for sheet is 15 min/1050-1100°C/WQ or AC.

Welding operations should be carried out with the material in the solution-treated condition. An 8 h/800°/AC aging treatment can be applied to the welded component. Details of welding practice are given subsequently under 'Fabrication'.

Composition, %

The composition in BS HR 10 is as follows:

Carbon	0.04-0.08
Silicon	0.40 max.
Manganese	0.60 max.
Sulfur	
Silver	0.0005max.
Aluminum	0.60 max.
Boron	0.005max.
Bismuth	
Cobalt	
Chromium	
Copper	
Iron	
Molybdenum	
Lead	0.0020 max.
Titanium	
Aluminum and titanium	
Nickel	Balance*

*Reference to the 'balance' of an alloy's composition does not guarantee this is exclusively of the element mentioned, but that it predominates and others are present only in minimal quantities.

Physical Properties

Density, g/cm ³	8.36
lb/in ³	0.302
Melting Range	
Liquidus temperature, °C	
Solidus temperature, °C	
Specific Heat, J/kg, °C	461

Density

The density values are the mean of 24 determinations on sheet and forged material. No significant difference in density between annealed and fully heat-treated sheet was detected. Compositional variation within the release specification was reflected in a density range of 8.33 to 8.39 g/cm³.

Melting Range

The liquidus temperature was determined by inverse cooling and the solidus by metallographic examination. The accuracy of determination was $\pm 5^{\circ}$ C for the liquidus temperature, and ± 0 , $\pm 10^{\circ}$ C for the solidus temperature.

Specific Heat

Approximately 461 J/kg °C in the range 20-100°C.

	℃	Shelles Shelles Stre	W/m•°C
Station Statio	Station Station Station	20	11.72
		100	12.98
		200	14.65
		300	16.33
		400	18.00
		500	19.68
		600	21.35
		700 🗸 🗸	23.03
		800	24.70
		900	26.80
		1000	28.47

These values have been calculated from electrical resistance measurements on a single fully heat-treated sheet specimen using modified Wiedemann-Franz equations.

States	0°C	Average data f or e xtruded bar	Average data for billet slices forged	Data for sheet
р. 	20-100	10.3	10.2	^ل 11.0 ^ل
	20-200	/ / / 11.9	12.1	12.1
	20-300	12.5	12.8	12.6
	20-400	13.1	13.3	13.0
	20-500	13.6	13.9	13.4
	20-600	14.2	14.5	13.9
	20-700	15.2	15.7	14.6
	20-800	16.2	16.7	15.3
	20-900	17.9	18.3	16.5
	20-1000	18.9	19.3	17.4

Table 2 - Mean Coefficient of Linear Thermal Expansion, 10^{-6/°}C

Table 3 - Electrical Properties

Electrical Resistivity at 20	°C = 115 microhm •cm
C C C C C C C C C C C C C C C C C C C	Relative Resistance
20	1.000
100	1.013
200	1.030
300	1.046
400	1.062
500	1.078
600	1.094
700	1.098
800	1.087
- 900	1.078
- 1000	1.081

Table 4 - Magnetic Properties

	Heat-treatment condition	P ermeability μ at 0 .02 T to 0.3 T
<u>, e</u>	Annealed	1.000745
	Fully heat-treated	້ ໌ ໌ 1.000765 ໌ ໌ ໌

No change in permeability with field strength was detected; neither was the permeability significantly influenced by sample orientation with respect to rolling direction.

Dynamic Moduli

The dynamic Young's modulus data (Table 5) were obtained on cylindrical specimens from extruded and forged sections and on sheet specimens. Both forms of sample were tested in the fully heat-treated condition and vibrated in the flexural mode.

	Dynamic Young's modulus		Dynamic torsional modulus	
and Statement Statement Statement	Extruded and forged section	Sheet	She She	eet
20	224	221	after the trainer she the	86
100	219	219	taken taken taken	84
200	213	212	an star star s	81
300	206	🖉 🎸 205 د	atres Status Status S	79
400	199	198	alles and allest and allest and	76
500	192	162	Start Start Start	73
600	185	185	at at a	70
700	175	177	office States States 3	66
800	163	168	after and after and after and	62
re 1 900 for	154	154	Strand Strand	57
manda00Aaat	142	143	S S S	52

Tensile Properties

The data given in Table 6 and presented graphically in Figure 1 % for extruded section, subsequently forged, and given the recommend 200 Aeat treatment. The data given in Table 7, and presented graphically in Figure 2 are for cold- rolled sheet 0.7 to 1.2 mm thick given the recommended heat treatment. Tensile properties at 780°C for plain and welded cold-rolled sheet 1.2 and 0.9 mm thick are compared in Table 8. The data represent the statistical analyses of routine release tests on 100 casts produced as 1.2 and 0.9 mm sheet. The welding of test specimens was carried out between the first and second stages of the heat treatment.

Table 6 - Tensile Properties of Bar

	Salar Salar Salar Salar	Start Start Start S Start S		
0 0 0 0 0 °C 0 0 0	0.2% Proof Stress MPa	Tensile Strength M Pa	Elongation on 5.65 √So, %	Reduction of Area %
20	585	1004	45	41
j j j j j 100 j j	550	958	44 50 50 4	y an an 144 an an an
200	520	911	44	47
300	505	880	45	50
400	490	849	46	51
500	500	.834	Jan 36 46 Jan 36	52 52
600	490	819	43	50
700	495	772	27	34
800	460	587	15	26
900	145	232	34	్ ్ 58 ్ ్
1000	70	108	69	72

Heat treatment 2 h/1150°C/WQ + 8 h/800°C/AC

Strain rate 0.005/min to proof stress (at room temperature) and 0.002/min to proof stress (at elevated temperatures) and 0.01/min thereafter.

Tensile Properties (continued)

Heat treatment 3-10 min/1150°C/FBQ or WQ + 8 h/800°C/AC				
°C	0.2% Proof Stress MPa	Tensile Strength M Pa	Elongation on 50 mm %	
20	580	973	39	
100	515	896	40	
200	500	849	and and 41 and and	
300	475	834	42	
400	470	816	43	
500	490	803	43	
600	490	788	41	
5	475	757	23	
800	440	556	20	
900	135	201	49	
1000	70	108	65 0	

Table 7 - Tensile Properties of Sheet

Strain rate 0.005/min to proof stress (at room temperature) and 0.002/min to proof stress (at elevated temperatures) and 0.01/min thereafter.

Table 8 - Tensile Properties of Plain and Welded Sheet

Routine release data at 780°C for 1.2 and 0.9 mm cold-rolled sheet, Heat treatment 5 min/1150°C/AC + weld + 8 h/800°C/AC

	Plain	Sheet	Argon-arc autogenously butt welded sheet	
Parameter	Tensile Strength MPa	Elongation on 25 mm %	Tensile Strength MPa	Elongation on 25 mm %
Mean	632	24.0	629	11.7
Standard deviation	23	6.5	s s s s s23	4.6
Minimum requirements of Rolls-Royce Specification MSRR. 7036	541	9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	463	5 5 5

Strain rate 0.002/min to proof stress and 0.1/min thereafter.

Figure 1. Tensile properties of bar. Heat treatment 2h/1150°C/WQ + 8h/800°C/AC

A= Elongation R_m = Tensile Strength R_p = 0.2% Proof Stress Z= Reduction of Area

Creep Properties

Bar

Creep-rupture curves for bar given the recommended 2 h/1150°C/WQ + 8h/800°C/AC heat treatment are presented by Larson-Miller parameter in Figure 3. Derived creep-

rupture properties of extruded section are shown in Table 9.

Total plastic strain data obtained on extruded section after the recommended heat treatment are given in Table 10. Stresses in the region of or above proof stress have been omitted since under these conditions the creep characteristics are markedly influenced by the method of applying the stress and the amount of strain on loading.

Table 9 - Creep-Rupture Properties of Extruded Section

Heat treatment 2 h/1150°C/WQ + 8 h/800°C/AC

		a contraction of the second	Stress, MP	a, to give r	upture in	
	3 0 h	100 h	300 h	1000 h	3000 h	
Sec. S	550	(726)	695	680	633	(587)
	600	641	618	595	556	(510)
	650	479	541	510	471	(432)
	700	510	448	386	317	(263)
	750	378	317	263	224	(178)
	800	263	216	178	142	(116)
	850	165	133	103	77	(59)
	900	86	74	54	42	(34)

Values in parentheses are extrapolated from isothermal curves.

Sheet

Creep-rupture curves for fully heat-treated cold-rolled sheet are presented by Larson-Miller parameter in Figure 4. Derived creep-rupture properties of cold-rolled sheet are also shown in Table 11, where two sets of data were obtained from different casts. One cast was used for the 500 to 700°C data, and another for the 700 to 900°C data. For comparison, therefore, both sets of data are given at 700°C.

Preliminary total plastic strain data for 1.6 mm sheet, heat-treated $3 \min/1190^{\circ}C/FBQ + 8 \ln/800^{\circ}C/AC$, are given in Table 12. Again stresses in the region of or above proof stress have been omitted. Reducing the initial heattreatment temperature from 1190°C to 1150°C would not cause a significant difference in total plastic strain.

Tests on autogenously welded sheet have shown that very similar creep-rupture strengths are obtained. Sheet welded by other than the autogenous process may show properties affected by the method of welding used. Table 10 - Total Plastic Strain Data for Extruded Section

Heat treatme	nt 2 h/1150	°C/WQ +	8 n/800	°C/AC		6. 6.
	Strain	Stress, MPa, to give total plastic st			rain in	
0°	%	50 h	100 h	300 h	500 h	1000 h
700	0.1	(432)	386	324	301	270
a star star	0.2	and a second	417	347	324	286
	0.5	Aller and Aller	432	371	340	309
	1.0	Str. Str.	5 ¹⁶ - 5 ¹⁶	386	355	317
750	0.1	301	263	216	201	178
	0.2	317	278	232	208	185
Carl aller at	0.5	340	293	247	224	201
	1.0	355	309	263	239	208
800	0.1	178	162	136	125	110
	0.2	193	170	144	133	116
	0.5	208	185	153	139	124
and sealer sealer	1.0	216	193	162	147	130
of 850 of	0.1	102	93	69	-57	48
	0.2	J11	99	77	68	52
	0.5	117	105	85	73	59
	1.0	127	113	93	77	63
900	0.1	51	45	37	(31)	(25)
	0.2	54	48	39	(34)	(26)
	0.5	59	51	42	37	(29)
	1.0	63	56	45	40	(32)

Values in parentheses are extrapolated from isothermal curves.

Figure 3 - Creep-Rupture Properties of bar. Heat treatment 2h/1150°C/WQ +8 h/800°C/AC

1 MPa = 1 N/mm² (1 MN/m²) = 0.1 hbar = 1.02 kgf/mm² = 0.0647 tonf/in²

Figure 4 - Creep-Rupture Properties of Sheet. Heat treatment 3-10 mins/1150°C/FBQ or WQ+8 h/800°C/AC

1 MPa = 1 N/mm² (1 MN/m²) = 0.1 hbar = 1.02 kgf/mm² = 0.0647 tonf/in²

 Table 11 - Creep-Rupture Properties of Cold-Rolled Sheet

Stress, MPa, to give rupture in

1000 h

672

564

448

286

263

185

116

60

36

5000 h

201

131

73

42

<31

3000 H

(641

(533

(378)

(247

216

147

46

83

<31

300 h

710

595

510

340

317

224

147

79

46

Heat treatment 3-10 min/1150°C/FBQ or WQ + 8 h/800°C/AC

100 h

757

625

556

402

363

270

181

103

57

30 h

803

656

595

479

900				1		State State
-350	din.	all.	all'	atter	· All	

°C

550

600

650

700*

700*

750

800

850

*Two different casts, see text. Values in parentheses are extrapolated from isothermal curves.

Table 12 -	Total Plastic	Strain Data	for Cold-Rolled	Sheet
------------	----------------------	-------------	-----------------	-------

Hea	at-tre	atme	nt: 3 min/	′1190°C	:/FBQ +	8 h/800)°C/AC	Stefrer 3	1.
Statest		States	Strain	Strain Stress, MPa, to give total plastic strain					
	- °C	States	%	50 h	100 h	300 h	1000 h	3000 h	5000 h
testings	a station	700	0.2	363	332	278	224	178	159
		1 Crown	0.5	409	371	317	255	208	185
Str.	3	750	0.2	239	208	178	142	113	97
		Station	0.5	278	247	198	154	128	108
atestinge	Thefter	800	0.2	147	130	102	80	60	54
		Seatt	0.5	165	145	119	91	68	60
3	3	850	0.2	80	69	54	40	-	<u></u>
		Steller	0.5	్ 96	83	65	49	36 /	<u></u>
atestics	Alester	900	0.2	40	34	<31	<31	<31	<31
Sec.	a seal	A DAME	0.5	46	40	<31	<31	<31	<31

Impact Data

The room temperature Charpy impact strength of extruded and forged section given the recommended heat treatment of $2 h/1150^{\circ}C/WQ + 8 h/800^{\circ}C/AC$ is in the region of 111 J.

Long term embrittlement has been investigated by room and elevated temperature Chargy impact testing of extruded and forged section given the recommended heat treatment. The data given in Tables 13 and 14 represent the findings of these investigations and in general show the results of duplicate tests.

Table 13 - Impact Values, J, at Room Temperature

	Soaking		Soaking temperature, °C					
1	h	600	700	750	800	900		
10	30	111:103	73:75	68:80	98:98	190:176		
	100	88:92	54:58	65:56	87:79	160:165		
	300	87:100	34:30	41:43	58:52	108:119		
	1000	71:71	27:33	24:22	62:57	56:60		
	3000	98:81	12:14	24:35	39:35	46: 53		
	10 000	27:26	9:11	26:22	34:33	45:45		

Table 14 - Impact Values, J, at Elevated Temperatures

Soaking	Soaking and test temperature, °C					
h	600	750	800	900		
30	157:150	100:100	125:114	172:174		
100	146:130	96:92	114:100	180:160		
300	160:156	81:85	91:104	141:145		
1000	108:114	71:69	87:79	123:119		
3000	152:114	73:52	79:83	111:106		
10 000	65:64	42:39	72:71	110:107		

Fabrication

Hot Working

NIMONIC alloy 263 may be hot worked in the temperature range 950-1150°C.

Cold Working

Average mechanical properties pertinent to cold forming operations for annealed sheet 0.5 to 1.2 mm thick are given in the following table.

0.1% proof stress	343 MPa
0.2% proof stress	355 MPa
0.5% proof stress	369 MPa
Tensile strength	788 MPa
Elongation on 50 mm, %	59.7
Hardness	195 HV
Mean grain size	ASTM 6.5
Erichsen value	12.8 mm
Shear strength	588 MPa
Ratio of shear to tensile strength	0.75

The above data were obtained using an anneal of 3 minutes at 1190°C followed by fluidized bed quenching. A slight overall improvement in these properties is indicated by investigations using the 1150°C heat treatment.

Annealing

NIMONIC alloy 263 bar or heavy section is usually softened by a heat treatment of 2 h/1150°C/WQ, namely the first stage of the recommended two stage heat treatment for bar.

Annealing of NIMONIC alloy 263 sheet, required during manipulatory operations, should be by heating for 15 minutes in the temperature range 1050-1100°C followed by rapid cooling (water quenching for heavier sheet and air cooling for thin section sheet). Fluidized bed quenching may also be used.

Welding

Argon Shielded Process

NIMONIC alloy 263 is readily welded by automatic and manual T.I.G. processes and by M.I.G. processes. The choice of process depends on the joint configuration and on material thickness. For simple butt joints automatic T.I.G. welding can be used, with or without filler metal additions, depending on thickness. Material thinner than 1.6 mm can be welded without filler metal but above this thickness, filler metal must be added. The limiting thickness for automatic T.I.G. welding is around 3.25 mm.

For more complicated joints, or for thicker material, manual T.I.G. welding can be employed. This process can be used on all section thicknesses but the much faster M.I.G. processes are normally used for material above 4.8 mm thick particularly if a lot of welding is involved. As NIMONIC alloy 263 does not suffer from heat-affectedzone cracking, both "spray" and "dip" transfer conditions can be used when M.I.G. welding, although "dip" transfer is preferred.

The filler metal to be used for all argon-shielded welding processes is NIMONIC filler metal 263, of matching composition to the base alloy. It is available in 914 mm straight lengths at 3.3, 2.6, 2.0, 1.6, and 1.2 mm diameter for manual welding and on reels at 1.6, 1.1 and 0.9 mm diameter for automatic T.I.G. and M.I.G. welding.

The shielding gas should be either pure argon or argon plus 5% hydrogen, if the latter is preferred. On no account should argon-oxygen mixtures or carbon dioxide be used.

Resistance Welding

Resistance spot, stitch and seam welding techniques are in regular use on NIMONIC alloy 263 components.

Other Joining Processes

Many other joining process are available for NIMONIC alloy 263, but the choice of any one will depend on the application and the equipment available. For example, flash-butt welding is used for the manufacture of gas turbine rings, but finds little application elsewhere. In addition, high-temperature brazing, electron-beam welding and plasma-arc welding can all be used should the application warrant them. For the majority of applications argon-shielded and resistance welding techniques will suffice.

Available Products

NIMONIC alloy 263 is generally available in the following forms:

bars and billets for forging rods and bars for machining extruded section, rectangular or profiled for machining, rolling and welding to rings etc. hot-rolled plate and sheet cold-rolled sheet and strip cold-worked tube cold-drawn wire and filler wire

Forms not mentioned above may be supplied to order. Minimum production quantities may apply.

Specifications

NIMONIC alloy 263 is designated UNS N07263/W. Nr. 2.4650 and is covered by the following Specifications:

Rod, Bar, Billet, Wire and Forgings - BS HR 10 (bar, billet, forgings & parts), AECMA PrEn 2199 & 2201 (bar), AECMA PrEn 2200 (forgings), DIN 17752 (rod & bar), DIN 17753 (wire), DIN 17754 (forgings)

Plate, Sheet and Strip - BS HR 206 (plate, sheet & strip), AECMA PrEn 2203 (sheet & strip), AECMA PrEn 2418 (plate), DIN 17750 (plate, sheet & strip), SAE AMS 5872 (plate, sheet & strip)

Pipe and Tube - BS HR 404 (seamless tube), AECMA PrEn 2202 (tube), DIN 17751 (pipe and tube)

Composition - DIN 17744

Publication Number SMC-054 Copyright © Special Metals Corporation, 2004 (Sept 04)

NIMONIC is a trademark of the Special Metals Corporation group of companies.

The data contained in this publication is for informational purposes only and may be revised at any time without prior notice. The data is believed to be accurate and reliable, but Special Metals makes no representation or warranty of any kind (express or implied) and assumes no liability with respect to the accuracy or completeness of the information contained herein. Although the data is believed to be representative of the product, the actual characteristics or performance of the product may vary from what is shown in this publication. Nothing contained in this publication should be construed as guaranteeing the product for a particular use or application.